Exercise 4

[1] Concisely describe the differences between Fourier transform and Fourier series expansion.

[2] (Optional: if you think you’ve done before and confident, you can skip): Demonstrate the orthogonality

\[
\int_0^a \sin \left(\frac{2\pi n}{a} x \right) \sin \left(\frac{2\pi m}{a} x \right) dx = 0 \quad \text{unless} \quad n = m
\]

\[
\int_0^a \cos \left(\frac{2\pi n}{a} x \right) \cos \left(\frac{2\pi m}{a} x \right) dx = 0 \quad \text{unless} \quad n = m
\]

\[
\int_0^a \sin \left(\frac{2\pi n}{a} x \right) \cos \left(\frac{2\pi m}{a} x \right) dx = 0 \quad \text{for all} \quad n, m
\]

[3] Consider a periodic domain \(0 \leq x \leq 4\pi \). Periodic means the left boundary and the right boundary are connected to each other.

(a) Solve for \(E \) from Gauss’s law

\[
\frac{\partial E(x)}{\partial x} = \rho(x)
\]

when \(\rho(x) = A \cos kx \). Here, we set \(E(0) = 0 \) as a boundary condition. What condition should \(k \) satisfy?

(b) Solve Eq.\((1) \) using Fourier transform for \(\rho(x) \) and \(E(x) \), and then inverse Fourier transform. Then apply \(\rho(x) = A \cos kx \).

[4] (Schwartz 2-3) Find the energy stored in a uniform, spherical charge distribution of radius \(R \) and total charge \(Q \). For now, you can estimate the stored energy by

\[
U = \frac{1}{8\pi} \int_{all-space} E^2 dV.
\]
\[f(x) = \sum A_n \sin(2\pi nx/a) \]

Figure 1: An example of Fourier series expansion within a domain \(0 \leq x \leq a\).

\[f(x) = \exp(-x^2) \]

Figure 2: An example of Fourier transform when \(k\) is no longer integer and the domain \(a \rightarrow \infty\).