Exercise 10

[1] (50pts) A long straight conductor carries current I. It is in the form a cylinder of radius R with an off-axis cylindrical hole of radius b, as shown. The distance between the axis of the cylinder and the axis of the hole is a. Find the magnetic field in the hole.

[2] (50pts) A Hamiltonian of a charged particle in (a) non-relativistic case is given by

$$H(p, x) = \frac{1}{2m} \left[p - \frac{q}{c} A(x) \right]^2 + q \Phi(x)$$

and in (b) relativistic case,

$$H(p, x) = \left[m^2 c^4 + c^2 \left(p - \frac{q}{c} A \right)^2 \right]^{1/2} + q \Phi(x)$$

where m and q are the mass and charge of the particle, respectively. Confirm that (a) can be resumed from (b). Derive the equation of motion from (a). As a reminder, canonical equation is given by

$$\frac{dx_i}{dt} = \frac{\partial H}{\partial p_i},$$

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial x_i}.$$