Exercise 6

[1] Obtain the radial and azimuthal components of electric field in terms of \(r \) and \(\theta \), when an electrostatic potential made by a dipole

\[
\Phi = q \left(\frac{1}{r_1} - \frac{1}{r_2} \right)
\]

is given as in the figure. As a reminder, in polar coordinates,

\[
\nabla f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}.
\]

[2] (Schwartz 2-3) Find the energy stored in a uniform, spherical charge distribution of radius \(R \) and total charge \(Q \). For now, you can estimate the stored energy by

\[
U = \frac{1}{8\pi} \int_{\text{all space}} E^2 dV.
\]

[3] (Schwartz 2-4) A charge \(Q \) is deposited on a spherical conductor of radius \(R \). What is the energy of the distribution?

[4] (Schwartz 2-5) Two long, concentric conducting cylinders have radii \(a \) and \(b \), respectively, and are each of length \(l \). The space between them is filled with material having dielectric constant \(\varepsilon \). If the potential difference between the cylinder is \(V \), find the total energy stored in the fields between them.